MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. EN AC-42100 Aluminum

Both 6023 aluminum and EN AC-42100 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 11
3.4 to 9.0
Fatigue Strength, MPa 120 to 130
76 to 82
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 360
280 to 290
Tensile Strength: Yield (Proof), MPa 300 to 310
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 580
600
Specific Heat Capacity, J/kg-K 890
910
Thermal Conductivity, W/m-K 170
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
41
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
9.1 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
53
Strength to Weight: Axial, points 35 to 36
30 to 31
Strength to Weight: Bending, points 40
37 to 38
Thermal Diffusivity, mm2/s 67
66
Thermal Shock Resistance, points 16
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94 to 97.7
91.3 to 93.3
Bismuth (Bi), % 0.3 to 0.8
0
Copper (Cu), % 0.2 to 0.5
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 0.19
Magnesium (Mg), % 0.4 to 0.9
0.25 to 0.45
Manganese (Mn), % 0.2 to 0.6
0 to 0.1
Silicon (Si), % 0.6 to 1.4
6.5 to 7.5
Tin (Sn), % 0.6 to 1.2
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.1

Comparable Variants