MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. EN AC-45300 Aluminum

Both 6023 aluminum and EN AC-45300 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 11
1.0 to 2.8
Fatigue Strength, MPa 120 to 130
59 to 72
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 360
220 to 290
Tensile Strength: Yield (Proof), MPa 300 to 310
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 580
590
Specific Heat Capacity, J/kg-K 890
890
Thermal Conductivity, W/m-K 170
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
36
Electrical Conductivity: Equal Weight (Specific), % IACS 140
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
160 to 390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 35 to 36
23 to 29
Strength to Weight: Bending, points 40
30 to 35
Thermal Diffusivity, mm2/s 67
60
Thermal Shock Resistance, points 16
10 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94 to 97.7
90.2 to 94.2
Bismuth (Bi), % 0.3 to 0.8
0
Copper (Cu), % 0.2 to 0.5
1.0 to 1.5
Iron (Fe), % 0 to 0.5
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.4 to 0.9
0.35 to 0.65
Manganese (Mn), % 0.2 to 0.6
0 to 0.55
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0.6 to 1.4
4.5 to 5.5
Tin (Sn), % 0.6 to 1.2
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants