MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. G-CoCr28 Cobalt

6023 aluminum belongs to the aluminum alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 11
6.7
Fatigue Strength, MPa 120 to 130
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
83
Tensile Strength: Ultimate (UTS), MPa 360
560
Tensile Strength: Yield (Proof), MPa 300 to 310
260

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
1200
Melting Completion (Liquidus), °C 640
1330
Melting Onset (Solidus), °C 580
1270
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
8.5
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
100
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1180
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
31
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
160
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 35 to 36
19
Strength to Weight: Bending, points 40
19
Thermal Diffusivity, mm2/s 67
2.2
Thermal Shock Resistance, points 16
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94 to 97.7
0
Bismuth (Bi), % 0.3 to 0.8
0
Carbon (C), % 0
0.050 to 0.25
Chromium (Cr), % 0
27 to 30
Cobalt (Co), % 0
48 to 52
Copper (Cu), % 0.2 to 0.5
0
Iron (Fe), % 0 to 0.5
9.7 to 24.5
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 4.0
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 1.4
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.2
0
Residuals, % 0 to 0.15
0