MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. Grade 20 Titanium

6023 aluminum belongs to the aluminum alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 11
5.7 to 17
Fatigue Strength, MPa 120 to 130
550 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
47
Shear Strength, MPa 210 to 220
560 to 740
Tensile Strength: Ultimate (UTS), MPa 360
900 to 1270
Tensile Strength: Yield (Proof), MPa 300 to 310
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
370
Melting Completion (Liquidus), °C 640
1660
Melting Onset (Solidus), °C 580
1600
Specific Heat Capacity, J/kg-K 890
520
Thermal Expansion, µm/m-K 23
9.6

Otherwise Unclassified Properties

Density, g/cm3 2.8
5.0
Embodied Carbon, kg CO2/kg material 8.3
52
Embodied Energy, MJ/kg 150
860
Embodied Water, L/kg 1180
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
2940 to 5760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
33
Strength to Weight: Axial, points 35 to 36
50 to 70
Strength to Weight: Bending, points 40
41 to 52
Thermal Shock Resistance, points 16
55 to 77

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94 to 97.7
3.0 to 4.0
Bismuth (Bi), % 0.3 to 0.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
5.5 to 6.5
Copper (Cu), % 0.2 to 0.5
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 0 to 0.5
0 to 0.3
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0.6 to 1.4
0
Tin (Sn), % 0.6 to 1.2
0
Titanium (Ti), % 0
71 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0 to 0.15
0 to 0.4

Comparable Variants