MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. S45000 Stainless Steel

6023 aluminum belongs to the aluminum alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11
6.8 to 14
Fatigue Strength, MPa 120 to 130
330 to 650
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 210 to 220
590 to 830
Tensile Strength: Ultimate (UTS), MPa 360
980 to 1410
Tensile Strength: Yield (Proof), MPa 300 to 310
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
840
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1180
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
850 to 4400
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 35 to 36
35 to 50
Strength to Weight: Bending, points 40
28 to 36
Thermal Diffusivity, mm2/s 67
4.5
Thermal Shock Resistance, points 16
33 to 47

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94 to 97.7
0
Bismuth (Bi), % 0.3 to 0.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 0.2 to 0.5
1.3 to 1.8
Iron (Fe), % 0 to 0.5
72.1 to 79.3
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
5.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 1.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.2
0
Residuals, % 0 to 0.15
0