MakeItFrom.com
Menu (ESC)

6023-T6511 Aluminum vs. 6082-T6511 Aluminum

Both 6023-T6511 aluminum and 6082-T6511 aluminum are aluminum alloys. Both are furnished in the T6511 temper. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6023-T6511 aluminum and the bottom bar is 6082-T6511 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 11
13
Fatigue Strength, MPa 120
95
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 220
220
Tensile Strength: Ultimate (UTS), MPa 360
340
Tensile Strength: Yield (Proof), MPa 300
320

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 580
580
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
160
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
42
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
43
Resilience: Unit (Modulus of Resilience), kJ/m3 670
710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 36
35
Strength to Weight: Bending, points 40
40
Thermal Diffusivity, mm2/s 67
67
Thermal Shock Resistance, points 16
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94 to 97.7
95.2 to 98.3
Bismuth (Bi), % 0.3 to 0.8
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0.2 to 0.5
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.5
Magnesium (Mg), % 0.4 to 0.9
0.6 to 1.2
Manganese (Mn), % 0.2 to 0.6
0.4 to 1.0
Silicon (Si), % 0.6 to 1.4
0.7 to 1.3
Tin (Sn), % 0.6 to 1.2
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15