MakeItFrom.com
Menu (ESC)

6025 Aluminum vs. EN AC-46400 Aluminum

Both 6025 aluminum and EN AC-46400 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6025 aluminum and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 2.8 to 10
1.1 to 1.7
Fatigue Strength, MPa 67 to 110
75 to 85
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 190 to 240
170 to 310
Tensile Strength: Yield (Proof), MPa 68 to 210
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 410
520
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 550
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
33
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.5
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 15
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 310
82 to 500
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
52
Strength to Weight: Axial, points 19 to 24
18 to 32
Strength to Weight: Bending, points 26 to 31
26 to 38
Thermal Diffusivity, mm2/s 54
55
Thermal Shock Resistance, points 8.2 to 10
7.8 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.7 to 96.3
85.4 to 90.5
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0.2 to 0.7
0.8 to 1.3
Iron (Fe), % 0 to 0.7
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 2.1 to 3.0
0.25 to 0.65
Manganese (Mn), % 0.6 to 1.4
0.15 to 0.55
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0.8 to 1.5
8.3 to 9.7
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.8
Residuals, % 0 to 0.15
0 to 0.25