MakeItFrom.com
Menu (ESC)

6060 Aluminum vs. 328.0 Aluminum

Both 6060 aluminum and 328.0 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 6060 aluminum and the bottom bar is 328.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 9.0 to 16
1.6 to 2.1
Fatigue Strength, MPa 37 to 70
55 to 80
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 140 to 220
200 to 270
Tensile Strength: Yield (Proof), MPa 71 to 170
120 to 170

Thermal Properties

Latent Heat of Fusion, J/g 400
510
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 660
620
Melting Onset (Solidus), °C 610
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 210
120
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
30
Electrical Conductivity: Equal Weight (Specific), % IACS 180
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
7.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 24
2.8 to 5.0
Resilience: Unit (Modulus of Resilience), kJ/m3 37 to 210
92 to 200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 14 to 23
21 to 28
Strength to Weight: Bending, points 22 to 30
28 to 34
Thermal Diffusivity, mm2/s 85
50
Thermal Shock Resistance, points 6.3 to 9.9
9.2 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.9 to 99.3
84.5 to 91.1
Chromium (Cr), % 0 to 0.050
0 to 0.35
Copper (Cu), % 0 to 0.1
1.0 to 2.0
Iron (Fe), % 0.1 to 0.3
0 to 1.0
Magnesium (Mg), % 0.35 to 0.6
0.2 to 0.6
Manganese (Mn), % 0 to 0.1
0.2 to 0.6
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0.3 to 0.6
7.5 to 8.5
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.15
0 to 1.5
Residuals, % 0 to 0.15
0 to 0.5

Comparable Variants