MakeItFrom.com
Menu (ESC)

6060 Aluminum vs. A444.0 Aluminum

Both 6060 aluminum and A444.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6060 aluminum and the bottom bar is A444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 9.0 to 16
18
Fatigue Strength, MPa 37 to 70
37
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 140 to 220
160
Tensile Strength: Yield (Proof), MPa 71 to 170
66

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 660
630
Melting Onset (Solidus), °C 610
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 210
160
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
41
Electrical Conductivity: Equal Weight (Specific), % IACS 180
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 24
24
Resilience: Unit (Modulus of Resilience), kJ/m3 37 to 210
31
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 14 to 23
17
Strength to Weight: Bending, points 22 to 30
25
Thermal Diffusivity, mm2/s 85
68
Thermal Shock Resistance, points 6.3 to 9.9
7.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.9 to 99.3
91.6 to 93.5
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0.1 to 0.3
0 to 0.2
Magnesium (Mg), % 0.35 to 0.6
0 to 0.050
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 0.3 to 0.6
6.5 to 7.5
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.15
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15