MakeItFrom.com
Menu (ESC)

6060 Aluminum vs. S44626 Stainless Steel

6060 aluminum belongs to the aluminum alloys classification, while S44626 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6060 aluminum and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.0 to 16
23
Fatigue Strength, MPa 37 to 70
230
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Shear Strength, MPa 86 to 130
340
Tensile Strength: Ultimate (UTS), MPa 140 to 220
540
Tensile Strength: Yield (Proof), MPa 71 to 170
350

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 660
1440
Melting Onset (Solidus), °C 610
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 210
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1190
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 24
110
Resilience: Unit (Modulus of Resilience), kJ/m3 37 to 210
300
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 14 to 23
19
Strength to Weight: Bending, points 22 to 30
19
Thermal Diffusivity, mm2/s 85
4.6
Thermal Shock Resistance, points 6.3 to 9.9
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.9 to 99.3
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.050
25 to 27
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0.1 to 0.3
68.1 to 74.1
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0.2 to 1.0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0