MakeItFrom.com
Menu (ESC)

6060 Aluminum vs. S44735 Stainless Steel

6060 aluminum belongs to the aluminum alloys classification, while S44735 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6060 aluminum and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 9.0 to 16
21
Fatigue Strength, MPa 37 to 70
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
82
Shear Strength, MPa 86 to 130
390
Tensile Strength: Ultimate (UTS), MPa 140 to 220
630
Tensile Strength: Yield (Proof), MPa 71 to 170
460

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
21
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
4.4
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1190
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 24
120
Resilience: Unit (Modulus of Resilience), kJ/m3 37 to 210
520
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 14 to 23
23
Strength to Weight: Bending, points 22 to 30
21
Thermal Shock Resistance, points 6.3 to 9.9
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.9 to 99.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
28 to 30
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.1 to 0.3
60.7 to 68.4
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.6 to 4.2
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0.2 to 1.0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0