MakeItFrom.com
Menu (ESC)

6060-T4 Aluminum vs. 6182-T4 Aluminum

Both 6060-T4 aluminum and 6182-T4 aluminum are aluminum alloys. Both are furnished in the T4 temper. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6060-T4 aluminum and the bottom bar is 6182-T4 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 16
13
Fatigue Strength, MPa 37
63
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 86
140
Tensile Strength: Ultimate (UTS), MPa 140
230
Tensile Strength: Yield (Proof), MPa 71
130

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 610
600
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 210
160
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
40
Electrical Conductivity: Equal Weight (Specific), % IACS 180
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
26
Resilience: Unit (Modulus of Resilience), kJ/m3 37
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 14
23
Strength to Weight: Bending, points 22
30
Thermal Diffusivity, mm2/s 85
65
Thermal Shock Resistance, points 6.3
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.9 to 99.3
95 to 97.9
Chromium (Cr), % 0 to 0.050
0 to 0.25
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0.1 to 0.3
0 to 0.5
Magnesium (Mg), % 0.35 to 0.6
0.7 to 1.2
Manganese (Mn), % 0 to 0.1
0.5 to 1.0
Silicon (Si), % 0.3 to 0.6
0.9 to 1.3
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.15
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0 to 0.15
0 to 0.15