MakeItFrom.com
Menu (ESC)

6061-T4510 Aluminum vs. 6066-T4510 Aluminum

Both 6061-T4510 aluminum and 6066-T4510 aluminum are aluminum alloys. Both are furnished in the T4510 temper. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6061-T4510 aluminum and the bottom bar is 6066-T4510 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 16
13
Fatigue Strength, MPa 65
98
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 130
190
Tensile Strength: Ultimate (UTS), MPa 210
310
Tensile Strength: Yield (Proof), MPa 120
190

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 580
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 170
150
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
40
Electrical Conductivity: Equal Weight (Specific), % IACS 140
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
36
Resilience: Unit (Modulus of Resilience), kJ/m3 110
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 21
31
Strength to Weight: Bending, points 28
36
Thermal Diffusivity, mm2/s 68
61
Thermal Shock Resistance, points 9.1
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.9 to 98.6
93 to 97
Chromium (Cr), % 0.040 to 0.35
0 to 0.4
Copper (Cu), % 0.15 to 0.4
0.7 to 1.2
Iron (Fe), % 0 to 0.7
0 to 0.5
Magnesium (Mg), % 0.8 to 1.2
0.8 to 1.4
Manganese (Mn), % 0 to 0.15
0.6 to 1.1
Silicon (Si), % 0.4 to 0.8
0.9 to 1.8
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15