MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. 238.0 Aluminum

Both 6063 aluminum and 238.0 aluminum are aluminum alloys. They have 84% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is 238.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
76
Elongation at Break, % 7.3 to 21
1.5
Fatigue Strength, MPa 39 to 95
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 110 to 300
210
Tensile Strength: Yield (Proof), MPa 49 to 270
170

Thermal Properties

Latent Heat of Fusion, J/g 400
430
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 620
510
Specific Heat Capacity, J/kg-K 900
840
Thermal Conductivity, W/m-K 190 to 220
100
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 58
25
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 190
67

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
3.4
Embodied Carbon, kg CO2/kg material 8.3
7.4
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 27
2.9
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
180
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 50
42
Strength to Weight: Axial, points 11 to 31
17
Strength to Weight: Bending, points 18 to 37
23
Thermal Diffusivity, mm2/s 79 to 89
37
Thermal Shock Resistance, points 4.8 to 13
9.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99.4
81.9 to 84.9
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
9.5 to 10.5
Iron (Fe), % 0 to 0.35
1.0 to 1.5
Magnesium (Mg), % 0.45 to 0.9
0 to 0.25
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0.2 to 0.6
3.6 to 4.4
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
1.0 to 1.5
Residuals, % 0 to 0.15
0