MakeItFrom.com
Menu (ESC)

6063 Aluminum vs. Grade Ti-Pd7B Titanium

6063 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd7B titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 6063 aluminum and the bottom bar is grade Ti-Pd7B titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 95
180
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 7.3 to 21
17
Fatigue Strength, MPa 39 to 95
200
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 110 to 300
390
Tensile Strength: Yield (Proof), MPa 49 to 270
310

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 160
320
Melting Completion (Liquidus), °C 650
1660
Melting Onset (Solidus), °C 620
1610
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 190 to 220
22
Thermal Expansion, µm/m-K 23
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 58
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 190
7.1

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.3
49
Embodied Energy, MJ/kg 150
840
Embodied Water, L/kg 1190
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 27
62
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 540
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 11 to 31
24
Strength to Weight: Bending, points 18 to 37
26
Thermal Diffusivity, mm2/s 79 to 89
8.9
Thermal Shock Resistance, points 4.8 to 13
30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99.4
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.35
0 to 0.2
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Silicon (Si), % 0.2 to 0.6
0
Titanium (Ti), % 0 to 0.1
98.8 to 99.9
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0 to 0.4