MakeItFrom.com
Menu (ESC)

6063-T6 Aluminum vs. 6101-T6 Aluminum

Both 6063-T6 aluminum and 6101-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6063-T6 aluminum and the bottom bar is 6101-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
71
Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 11
15
Fatigue Strength, MPa 70
88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 150
140
Tensile Strength: Ultimate (UTS), MPa 240
220
Tensile Strength: Yield (Proof), MPa 210
200

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 620
620
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 200
220
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 53
57
Electrical Conductivity: Equal Weight (Specific), % IACS 180
190

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
32
Resilience: Unit (Modulus of Resilience), kJ/m3 320
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 25
23
Strength to Weight: Bending, points 32
30
Thermal Diffusivity, mm2/s 82
89
Thermal Shock Resistance, points 11
9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99.4
97.6 to 99.4
Boron (B), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
0 to 0.030
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.35
0 to 0.5
Magnesium (Mg), % 0.45 to 0.9
0.35 to 0.8
Manganese (Mn), % 0 to 0.1
0 to 0.030
Silicon (Si), % 0.2 to 0.6
0.3 to 0.7
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.1