MakeItFrom.com
Menu (ESC)

6063A Aluminum vs. 6060 Aluminum

Both 6063A aluminum and 6060 aluminum are aluminum alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6063A aluminum and the bottom bar is 6060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 6.7 to 18
9.0 to 16
Fatigue Strength, MPa 53 to 80
37 to 70
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 78 to 150
86 to 130
Tensile Strength: Ultimate (UTS), MPa 130 to 260
140 to 220
Tensile Strength: Yield (Proof), MPa 55 to 200
71 to 170

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 620
610
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 200
210
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 54
54
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 21
13 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 22 to 280
37 to 210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 13 to 26
14 to 23
Strength to Weight: Bending, points 21 to 33
22 to 30
Thermal Diffusivity, mm2/s 83
85
Thermal Shock Resistance, points 5.6 to 11
6.3 to 9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99
97.9 to 99.3
Chromium (Cr), % 0 to 0.050
0 to 0.050
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0.15 to 0.35
0.1 to 0.3
Magnesium (Mg), % 0.6 to 0.9
0.35 to 0.6
Manganese (Mn), % 0 to 0.15
0 to 0.1
Silicon (Si), % 0.3 to 0.6
0.3 to 0.6
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.15
0 to 0.15
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants