MakeItFrom.com
Menu (ESC)

6063A Aluminum vs. 8090 Aluminum

Both 6063A aluminum and 8090 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6063A aluminum and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 6.7 to 18
3.5 to 13
Fatigue Strength, MPa 53 to 80
91 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Tensile Strength: Ultimate (UTS), MPa 130 to 260
340 to 490
Tensile Strength: Yield (Proof), MPa 55 to 200
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 620
600
Specific Heat Capacity, J/kg-K 900
960
Thermal Conductivity, W/m-K 200
95 to 160
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 54
20
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
66

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.6
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1190
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 21
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 22 to 280
340 to 1330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 13 to 26
34 to 49
Strength to Weight: Bending, points 21 to 33
39 to 50
Thermal Diffusivity, mm2/s 83
36 to 60
Thermal Shock Resistance, points 5.6 to 11
15 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99
93 to 98.4
Chromium (Cr), % 0 to 0.050
0 to 0.1
Copper (Cu), % 0 to 0.1
1.0 to 1.6
Iron (Fe), % 0.15 to 0.35
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0.6 to 0.9
0.6 to 1.3
Manganese (Mn), % 0 to 0.15
0 to 0.1
Silicon (Si), % 0.3 to 0.6
0 to 0.2
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.15
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0 to 0.15
0 to 0.15