MakeItFrom.com
Menu (ESC)

6063A Aluminum vs. EN 1.4923 Stainless Steel

6063A aluminum belongs to the aluminum alloys classification, while EN 1.4923 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063A aluminum and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.7 to 18
12 to 21
Fatigue Strength, MPa 53 to 80
300 to 440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 78 to 150
540 to 590
Tensile Strength: Ultimate (UTS), MPa 130 to 260
870 to 980
Tensile Strength: Yield (Proof), MPa 55 to 200
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
740
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 620
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
24
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 54
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1190
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 21
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 22 to 280
570 to 1580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 26
31 to 35
Strength to Weight: Bending, points 21 to 33
26 to 28
Thermal Diffusivity, mm2/s 83
6.5
Thermal Shock Resistance, points 5.6 to 11
30 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99
0
Carbon (C), % 0
0.18 to 0.24
Chromium (Cr), % 0 to 0.050
11 to 12.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.15 to 0.35
83.5 to 87.1
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.15
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.3 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0

Comparable Variants