MakeItFrom.com
Menu (ESC)

6063A Aluminum vs. Nickel 625

6063A aluminum belongs to the aluminum alloys classification, while nickel 625 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063A aluminum and the bottom bar is nickel 625.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.7 to 18
33 to 34
Fatigue Strength, MPa 53 to 80
240 to 320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Shear Strength, MPa 78 to 150
530 to 600
Tensile Strength: Ultimate (UTS), MPa 130 to 260
790 to 910
Tensile Strength: Yield (Proof), MPa 55 to 200
320 to 450

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 620
1290
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 200
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49 to 54
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.3
14
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1190
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 21
220 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 22 to 280
260 to 490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 13 to 26
26 to 29
Strength to Weight: Bending, points 21 to 33
22 to 24
Thermal Diffusivity, mm2/s 83
2.9
Thermal Shock Resistance, points 5.6 to 11
22 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99
0 to 0.4
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.050
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.15 to 0.35
0 to 5.0
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.15
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.9
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.3 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0 to 0.4
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0

Comparable Variants