MakeItFrom.com
Menu (ESC)

6063A Aluminum vs. N08120 Nickel

6063A aluminum belongs to the aluminum alloys classification, while N08120 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6063A aluminum and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.7 to 18
34
Fatigue Strength, MPa 53 to 80
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 78 to 150
470
Tensile Strength: Ultimate (UTS), MPa 130 to 260
700
Tensile Strength: Yield (Proof), MPa 55 to 200
310

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 620
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 200
11
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
45
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.3
7.2
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1190
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 21
190
Resilience: Unit (Modulus of Resilience), kJ/m3 22 to 280
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 13 to 26
24
Strength to Weight: Bending, points 21 to 33
21
Thermal Diffusivity, mm2/s 83
3.0
Thermal Shock Resistance, points 5.6 to 11
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.050
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0.15 to 0.35
21 to 41.4
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0