MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. Grade 5 Titanium

6065 aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 4.5 to 11
8.6 to 11
Fatigue Strength, MPa 96 to 110
530 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 190 to 230
600 to 710
Tensile Strength: Ultimate (UTS), MPa 310 to 400
1000 to 1190
Tensile Strength: Yield (Proof), MPa 270 to 380
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
330
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 590
1650
Specific Heat Capacity, J/kg-K 890
560
Thermal Conductivity, W/m-K 170
6.8
Thermal Expansion, µm/m-K 23
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 2.8
4.4
Embodied Carbon, kg CO2/kg material 8.4
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1200
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
35
Strength to Weight: Axial, points 31 to 40
62 to 75
Strength to Weight: Bending, points 36 to 43
50 to 56
Thermal Diffusivity, mm2/s 67
2.7
Thermal Shock Resistance, points 14 to 18
76 to 91

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 98.2
5.5 to 6.8
Bismuth (Bi), % 0.5 to 1.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0.15 to 0.4
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.4
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0.4 to 0.8
0
Titanium (Ti), % 0 to 0.1
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0 to 0.4