MakeItFrom.com
Menu (ESC)

6066-T6 Aluminum vs. 771.0-T6 Aluminum

Both 6066-T6 aluminum and 771.0-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6066-T6 aluminum and the bottom bar is 771.0-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
90
Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 9.5
6.5
Fatigue Strength, MPa 110
99
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 390
320
Tensile Strength: Yield (Proof), MPa 350
270

Thermal Properties

Latent Heat of Fusion, J/g 410
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 560
620
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 150
140
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
27
Electrical Conductivity: Equal Weight (Specific), % IACS 130
82

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
20
Resilience: Unit (Modulus of Resilience), kJ/m3 890
530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
46
Strength to Weight: Axial, points 39
30
Strength to Weight: Bending, points 43
35
Thermal Diffusivity, mm2/s 61
54
Thermal Shock Resistance, points 17
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 97
90.5 to 92.5
Chromium (Cr), % 0 to 0.4
0.060 to 0.2
Copper (Cu), % 0.7 to 1.2
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.15
Magnesium (Mg), % 0.8 to 1.4
0.8 to 1.0
Manganese (Mn), % 0.6 to 1.1
0 to 0.1
Silicon (Si), % 0.9 to 1.8
0 to 0.15
Titanium (Ti), % 0 to 0.2
0.1 to 0.2
Zinc (Zn), % 0 to 0.25
6.5 to 7.5
Residuals, % 0 to 0.15
0 to 0.15