MakeItFrom.com
Menu (ESC)

6070 Aluminum vs. EN AC-46100 Aluminum

Both 6070 aluminum and EN AC-46100 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6070 aluminum and the bottom bar is EN AC-46100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 5.6 to 8.6
1.0
Fatigue Strength, MPa 95 to 130
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 370 to 380
270
Tensile Strength: Yield (Proof), MPa 350
160

Thermal Properties

Latent Heat of Fusion, J/g 410
550
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 570
540
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 160
110
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
28
Electrical Conductivity: Equal Weight (Specific), % IACS 140
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 32
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 900
170
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 38
27
Strength to Weight: Bending, points 42 to 43
34
Thermal Diffusivity, mm2/s 65
44
Thermal Shock Resistance, points 16 to 17
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.6 to 98
80.4 to 88.5
Chromium (Cr), % 0 to 0.1
0 to 0.15
Copper (Cu), % 0.15 to 0.4
1.5 to 2.5
Iron (Fe), % 0 to 0.5
0 to 1.1
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.5 to 1.2
0 to 0.3
Manganese (Mn), % 0.4 to 1.0
0 to 0.55
Nickel (Ni), % 0
0 to 0.45
Silicon (Si), % 1.0 to 1.7
10 to 12
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 1.7
Residuals, % 0 to 0.15
0 to 0.25