MakeItFrom.com
Menu (ESC)

6101A Aluminum vs. AISI 301L Stainless Steel

6101A aluminum belongs to the aluminum alloys classification, while AISI 301L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101A aluminum and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 11
22 to 50
Fatigue Strength, MPa 80
240 to 530
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 130
440 to 660
Tensile Strength: Ultimate (UTS), MPa 220
620 to 1040
Tensile Strength: Yield (Proof), MPa 190
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
890
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 630
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1190
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 280
160 to 1580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 23
22 to 37
Strength to Weight: Bending, points 30
21 to 29
Thermal Diffusivity, mm2/s 84
4.1
Thermal Shock Resistance, points 10
14 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.9 to 99.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
70.7 to 78
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.1
0