MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. 296.0 Aluminum

Both 6105 aluminum and 296.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is 296.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 9.0 to 16
3.2 to 7.1
Fatigue Strength, MPa 95 to 130
47 to 70
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 190 to 280
260 to 270
Tensile Strength: Yield (Proof), MPa 120 to 270
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 410
420
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 600
540
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 180 to 190
130 to 150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
33 to 37
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
99 to 110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.3
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
7.6 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
110 to 220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
46
Strength to Weight: Axial, points 20 to 29
24 to 25
Strength to Weight: Bending, points 28 to 35
30 to 31
Thermal Diffusivity, mm2/s 72 to 79
51 to 56
Thermal Shock Resistance, points 8.6 to 12
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.2 to 99
89 to 94
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
4.0 to 5.0
Iron (Fe), % 0 to 0.35
0 to 1.2
Magnesium (Mg), % 0.45 to 0.8
0 to 0.050
Manganese (Mn), % 0 to 0.1
0 to 0.35
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0.6 to 1.0
2.0 to 3.0
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0 to 0.15
0 to 0.35