MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. EN 1.4869 Casting Alloy

6105 aluminum belongs to the aluminum alloys classification, while EN 1.4869 casting alloy belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is EN 1.4869 casting alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 9.0 to 16
5.7
Fatigue Strength, MPa 95 to 130
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 190 to 280
540
Tensile Strength: Yield (Proof), MPa 120 to 270
310

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 160
1200
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 180 to 190
10
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
26
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 20 to 29
18
Strength to Weight: Bending, points 28 to 35
17
Thermal Diffusivity, mm2/s 72 to 79
2.6
Thermal Shock Resistance, points 8.6 to 12
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.2 to 99
0
Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0 to 0.1
24 to 26
Cobalt (Co), % 0
14 to 16
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
11.4 to 23.6
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 1.0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0