MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. EN AC-48000 Aluminum

Both 6105 aluminum and EN AC-48000 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 9.0 to 16
1.0
Fatigue Strength, MPa 95 to 130
85 to 86
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 190 to 280
220 to 310
Tensile Strength: Yield (Proof), MPa 120 to 270
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 410
570
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 600
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 180 to 190
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
33
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
300 to 510
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
53
Strength to Weight: Axial, points 20 to 29
23 to 33
Strength to Weight: Bending, points 28 to 35
31 to 39
Thermal Diffusivity, mm2/s 72 to 79
54
Thermal Shock Resistance, points 8.6 to 12
10 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.2 to 99
80.4 to 87.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0.8 to 1.5
Iron (Fe), % 0 to 0.35
0 to 0.7
Magnesium (Mg), % 0.45 to 0.8
0.8 to 1.5
Manganese (Mn), % 0 to 0.1
0 to 0.35
Nickel (Ni), % 0
0.7 to 1.3
Silicon (Si), % 0.6 to 1.0
10.5 to 13.5
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 0.35
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants