MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. Grade CZ100 Nickel

6105 aluminum belongs to the aluminum alloys classification, while grade CZ100 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is grade CZ100 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
180
Elongation at Break, % 9.0 to 16
11
Fatigue Strength, MPa 95 to 130
68
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
69
Tensile Strength: Ultimate (UTS), MPa 190 to 280
390
Tensile Strength: Yield (Proof), MPa 120 to 270
140

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 600
1300
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 180 to 190
73
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
19
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
35
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
54
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 20 to 29
12
Strength to Weight: Bending, points 28 to 35
14
Thermal Diffusivity, mm2/s 72 to 79
19
Thermal Shock Resistance, points 8.6 to 12
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.2 to 99
0
Carbon (C), % 0
0 to 1.0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0 to 1.3
Iron (Fe), % 0 to 0.35
0 to 3.0
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 0
95 to 100
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.6 to 1.0
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0