MakeItFrom.com
Menu (ESC)

6106 Aluminum vs. 518.0 Aluminum

Both 6106 aluminum and 518.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6106 aluminum and the bottom bar is 518.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
67
Elongation at Break, % 9.1
5.0
Fatigue Strength, MPa 88
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 170
200
Tensile Strength: Ultimate (UTS), MPa 290
310
Tensile Strength: Yield (Proof), MPa 220
190

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 660
620
Melting Onset (Solidus), °C 610
560
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 190
98
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
24
Electrical Conductivity: Equal Weight (Specific), % IACS 160
81

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
9.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
14
Resilience: Unit (Modulus of Resilience), kJ/m3 370
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 29
32
Strength to Weight: Bending, points 35
38
Thermal Diffusivity, mm2/s 78
40
Thermal Shock Resistance, points 13
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.2 to 99.3
88.1 to 92.5
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.25
0 to 0.25
Iron (Fe), % 0 to 0.35
0 to 1.8
Magnesium (Mg), % 0.4 to 0.8
7.5 to 8.5
Manganese (Mn), % 0.050 to 0.2
0 to 0.35
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0.3 to 0.6
0 to 0.35
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0 to 0.15
Residuals, % 0 to 0.15
0 to 0.25