MakeItFrom.com
Menu (ESC)

6110 Aluminum vs. 1070A Aluminum

Both 6110 aluminum and 1070A aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6110 aluminum and the bottom bar is 1070A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 2.2
2.3 to 33
Fatigue Strength, MPa 120
17 to 51
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 290
44 to 81
Tensile Strength: Ultimate (UTS), MPa 500
68 to 140
Tensile Strength: Yield (Proof), MPa 500
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 600
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 170
230
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
60
Electrical Conductivity: Equal Weight (Specific), % IACS 140
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
3.0 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
2.1 to 100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 51
7.0 to 14
Strength to Weight: Bending, points 51
14 to 22
Thermal Diffusivity, mm2/s 67
94
Thermal Shock Resistance, points 22
3.1 to 6.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 98.4
99.7 to 100
Chromium (Cr), % 0.040 to 0.25
0
Copper (Cu), % 0.2 to 0.7
0 to 0.030
Iron (Fe), % 0 to 0.8
0 to 0.25
Magnesium (Mg), % 0.5 to 1.1
0 to 0.030
Manganese (Mn), % 0.2 to 0.7
0 to 0.030
Silicon (Si), % 0.7 to 1.5
0 to 0.2
Titanium (Ti), % 0 to 0.15
0 to 0.030
Zinc (Zn), % 0 to 0.3
0 to 0.070
Residuals, % 0 to 0.15
0