MakeItFrom.com
Menu (ESC)

6110 Aluminum vs. 5086 Aluminum

Both 6110 aluminum and 5086 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 6110 aluminum and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 2.2
1.7 to 20
Fatigue Strength, MPa 120
88 to 180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 290
160 to 230
Tensile Strength: Ultimate (UTS), MPa 500
270 to 390
Tensile Strength: Yield (Proof), MPa 500
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 600
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 170
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
31
Electrical Conductivity: Equal Weight (Specific), % IACS 140
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
86 to 770
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 51
28 to 40
Strength to Weight: Bending, points 51
34 to 44
Thermal Diffusivity, mm2/s 67
52
Thermal Shock Resistance, points 22
12 to 17

Alloy Composition

Aluminum (Al), % 94.4 to 98.4
93 to 96.3
Chromium (Cr), % 0.040 to 0.25
0.050 to 0.25
Copper (Cu), % 0.2 to 0.7
0 to 0.1
Iron (Fe), % 0 to 0.8
0 to 0.5
Magnesium (Mg), % 0.5 to 1.1
3.5 to 4.5
Manganese (Mn), % 0.2 to 0.7
0.2 to 0.7
Silicon (Si), % 0.7 to 1.5
0 to 0.4
Titanium (Ti), % 0 to 0.15
0 to 0.15
Zinc (Zn), % 0 to 0.3
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15