MakeItFrom.com
Menu (ESC)

6110 Aluminum vs. EN 2.4632 Nickel

6110 aluminum belongs to the aluminum alloys classification, while EN 2.4632 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110 aluminum and the bottom bar is EN 2.4632 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.2
17
Fatigue Strength, MPa 120
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Shear Strength, MPa 290
770
Tensile Strength: Ultimate (UTS), MPa 500
1250
Tensile Strength: Yield (Proof), MPa 500
780

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 640
1340
Melting Onset (Solidus), °C 600
1290
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.2
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1170
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
1570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 51
42
Strength to Weight: Bending, points 51
31
Thermal Diffusivity, mm2/s 67
3.3
Thermal Shock Resistance, points 22
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 98.4
1.0 to 2.0
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0.040 to 0.25
18 to 21
Cobalt (Co), % 0
15 to 21
Copper (Cu), % 0.2 to 0.7
0 to 0.2
Iron (Fe), % 0 to 0.8
0 to 1.5
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Nickel (Ni), % 0
49 to 64
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.7 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
2.0 to 3.0
Zinc (Zn), % 0 to 0.3
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0