MakeItFrom.com
Menu (ESC)

6110 Aluminum vs. EN AC-43500 Aluminum

Both 6110 aluminum and EN AC-43500 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6110 aluminum and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 2.2
4.5 to 13
Fatigue Strength, MPa 120
62 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 500
220 to 300
Tensile Strength: Yield (Proof), MPa 500
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 410
550
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 600
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 170
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
38
Electrical Conductivity: Equal Weight (Specific), % IACS 140
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 8.2
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
130 to 200
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 51
24 to 33
Strength to Weight: Bending, points 51
32 to 39
Thermal Diffusivity, mm2/s 67
60
Thermal Shock Resistance, points 22
10 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 98.4
86.4 to 90.5
Chromium (Cr), % 0.040 to 0.25
0
Copper (Cu), % 0.2 to 0.7
0 to 0.050
Iron (Fe), % 0 to 0.8
0 to 0.25
Magnesium (Mg), % 0.5 to 1.1
0.1 to 0.6
Manganese (Mn), % 0.2 to 0.7
0.4 to 0.8
Silicon (Si), % 0.7 to 1.5
9.0 to 11.5
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.3
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.15