MakeItFrom.com
Menu (ESC)

6110 Aluminum vs. CC212E Bronze

6110 aluminum belongs to the aluminum alloys classification, while CC212E bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110 aluminum and the bottom bar is CC212E bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
130
Elongation at Break, % 2.2
20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
47
Tensile Strength: Ultimate (UTS), MPa 500
710
Tensile Strength: Yield (Proof), MPa 500
310

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 600
1020
Specific Heat Capacity, J/kg-K 900
440
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.2
3.4
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1170
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
390
Stiffness to Weight: Axial, points 14
8.5
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 51
24
Strength to Weight: Bending, points 51
21
Thermal Shock Resistance, points 22
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 98.4
7.0 to 9.0
Chromium (Cr), % 0.040 to 0.25
0
Copper (Cu), % 0.2 to 0.7
68 to 77
Iron (Fe), % 0 to 0.8
2.0 to 4.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.5 to 1.1
0 to 0.050
Manganese (Mn), % 0.2 to 0.7
8.0 to 15
Nickel (Ni), % 0
1.5 to 4.5
Silicon (Si), % 0.7 to 1.5
0 to 0.1
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.3
0 to 1.0
Residuals, % 0 to 0.15
0