MakeItFrom.com
Menu (ESC)

6110 Aluminum vs. Grade 5 Titanium

6110 aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6110 aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 2.2
8.6 to 11
Fatigue Strength, MPa 120
530 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 290
600 to 710
Tensile Strength: Ultimate (UTS), MPa 500
1000 to 1190
Tensile Strength: Yield (Proof), MPa 500
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 600
1650
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 170
6.8
Thermal Expansion, µm/m-K 23
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.8
4.4
Embodied Carbon, kg CO2/kg material 8.2
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 51
62 to 75
Strength to Weight: Bending, points 51
50 to 56
Thermal Diffusivity, mm2/s 67
2.7
Thermal Shock Resistance, points 22
76 to 91

Alloy Composition

Aluminum (Al), % 94.4 to 98.4
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.040 to 0.25
0
Copper (Cu), % 0.2 to 0.7
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.8
0 to 0.4
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0.2 to 0.7
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0.7 to 1.5
0
Titanium (Ti), % 0 to 0.15
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0 to 0.4