MakeItFrom.com
Menu (ESC)

6110 Aluminum vs. N06035 Nickel

6110 aluminum belongs to the aluminum alloys classification, while N06035 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110 aluminum and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 2.2
34
Fatigue Strength, MPa 120
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
84
Shear Strength, MPa 290
440
Tensile Strength: Ultimate (UTS), MPa 500
660
Tensile Strength: Yield (Proof), MPa 500
270

Thermal Properties

Latent Heat of Fusion, J/g 410
340
Maximum Temperature: Mechanical, °C 170
1030
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 900
450
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.2
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 51
22
Strength to Weight: Bending, points 51
20
Thermal Shock Resistance, points 22
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 98.4
0 to 0.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.040 to 0.25
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0.2 to 0.7
0 to 0.3
Iron (Fe), % 0 to 0.8
0 to 2.0
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0.2 to 0.7
0 to 0.5
Molybdenum (Mo), % 0
7.6 to 9.0
Nickel (Ni), % 0
51.1 to 60.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.7 to 1.5
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0