MakeItFrom.com
Menu (ESC)

6110 Aluminum vs. N09777 Nickel

6110 aluminum belongs to the aluminum alloys classification, while N09777 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110 aluminum and the bottom bar is N09777 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.2
39
Fatigue Strength, MPa 120
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 290
400
Tensile Strength: Ultimate (UTS), MPa 500
580
Tensile Strength: Yield (Proof), MPa 500
240

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
38
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 8.2
7.4
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 51
20
Strength to Weight: Bending, points 51
19
Thermal Shock Resistance, points 22
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 98.4
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.040 to 0.25
14 to 19
Copper (Cu), % 0.2 to 0.7
0
Iron (Fe), % 0 to 0.8
28.5 to 47.5
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 5.5
Nickel (Ni), % 0
34 to 42
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.7 to 1.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
2.0 to 3.0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0