MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. 2195 Aluminum

Both 6110A aluminum and 2195 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is 2195 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 11 to 18
9.3
Fatigue Strength, MPa 140 to 210
190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 220 to 280
350
Tensile Strength: Ultimate (UTS), MPa 360 to 470
590
Tensile Strength: Yield (Proof), MPa 250 to 430
560

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 190
210
Melting Completion (Liquidus), °C 650
660
Melting Onset (Solidus), °C 600
550
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
34
Electrical Conductivity: Equal Weight (Specific), % IACS 140
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 8.4
8.6
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1170
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
54
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
2290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 36 to 47
55
Strength to Weight: Bending, points 41 to 48
53
Thermal Diffusivity, mm2/s 65
49
Thermal Shock Resistance, points 16 to 21
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.8 to 98
91.9 to 94.9
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0.3 to 0.8
3.7 to 4.3
Iron (Fe), % 0 to 0.5
0 to 0.15
Lithium (Li), % 0
0.8 to 1.2
Magnesium (Mg), % 0.7 to 1.1
0.25 to 0.8
Manganese (Mn), % 0.3 to 0.9
0 to 0.25
Silicon (Si), % 0.7 to 1.1
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.25
Zirconium (Zr), % 0 to 0.2
0.080 to 0.16
Residuals, % 0 to 0.15
0 to 0.15