MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. N07752 Nickel

6110A aluminum belongs to the aluminum alloys classification, while N07752 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11 to 18
22
Fatigue Strength, MPa 140 to 210
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 220 to 280
710
Tensile Strength: Ultimate (UTS), MPa 360 to 470
1120
Tensile Strength: Yield (Proof), MPa 250 to 430
740

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 190
960
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 600
1330
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.4
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
220
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
1450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 36 to 47
37
Strength to Weight: Bending, points 41 to 48
29
Thermal Diffusivity, mm2/s 65
3.2
Thermal Shock Resistance, points 16 to 21
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.8 to 98
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0.050 to 0.25
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0.3 to 0.8
0 to 0.5
Iron (Fe), % 0 to 0.5
5.0 to 9.0
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0.7 to 1.1
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.2
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.050
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0