MakeItFrom.com
Menu (ESC)

6162 Aluminum vs. 850.0 Aluminum

Both 6162 aluminum and 850.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6162 aluminum and the bottom bar is 850.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 6.7 to 9.1
7.9
Fatigue Strength, MPa 100 to 130
59
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170 to 180
100
Tensile Strength: Ultimate (UTS), MPa 290 to 300
140
Tensile Strength: Yield (Proof), MPa 260 to 270
76

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 620
370
Specific Heat Capacity, J/kg-K 900
850
Thermal Conductivity, W/m-K 190
180
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
47
Electrical Conductivity: Equal Weight (Specific), % IACS 170
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.7
3.1
Embodied Carbon, kg CO2/kg material 8.3
8.5
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 26
9.1
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 550
42
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 50
44
Strength to Weight: Axial, points 29 to 30
12
Strength to Weight: Bending, points 36
19
Thermal Diffusivity, mm2/s 79
69
Thermal Shock Resistance, points 13
6.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.7 to 98.9
88.3 to 93.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.2
0.7 to 1.3
Iron (Fe), % 0 to 0.5
0 to 0.7
Magnesium (Mg), % 0.7 to 1.1
0 to 0.1
Manganese (Mn), % 0 to 0.1
0 to 0.1
Nickel (Ni), % 0
0.7 to 1.3
Silicon (Si), % 0.4 to 0.8
0 to 0.7
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.3