MakeItFrom.com
Menu (ESC)

6182 Aluminum vs. 5457 Aluminum

Both 6182 aluminum and 5457 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6182 aluminum and the bottom bar is 5457 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 6.8 to 13
6.0 to 22
Fatigue Strength, MPa 63 to 99
55 to 98
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 140 to 190
85 to 130
Tensile Strength: Ultimate (UTS), MPa 230 to 320
130 to 210
Tensile Strength: Yield (Proof), MPa 130 to 270
50 to 190

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 600
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
180
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
46
Electrical Conductivity: Equal Weight (Specific), % IACS 130
150

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.4
8.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 520
18 to 250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 23 to 32
13 to 21
Strength to Weight: Bending, points 30 to 38
21 to 28
Thermal Diffusivity, mm2/s 65
72
Thermal Shock Resistance, points 10 to 14
5.7 to 9.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95 to 97.9
97.8 to 99.05
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 0.1
Magnesium (Mg), % 0.7 to 1.2
0.8 to 1.2
Manganese (Mn), % 0.5 to 1.0
0.15 to 0.45
Silicon (Si), % 0.9 to 1.3
0 to 0.080
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.2
0 to 0.050
Zirconium (Zr), % 0.050 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.1