MakeItFrom.com
Menu (ESC)

6182 Aluminum vs. SAE-AISI 1140 Steel

6182 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1140 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6182 aluminum and the bottom bar is SAE-AISI 1140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.8 to 13
14 to 18
Fatigue Strength, MPa 63 to 99
230 to 370
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 140 to 190
370 to 420
Tensile Strength: Ultimate (UTS), MPa 230 to 320
600 to 700
Tensile Strength: Yield (Proof), MPa 130 to 270
340 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
51
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1170
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
89 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 520
310 to 870
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 23 to 32
21 to 25
Strength to Weight: Bending, points 30 to 38
20 to 22
Thermal Diffusivity, mm2/s 65
14
Thermal Shock Resistance, points 10 to 14
18 to 21

Alloy Composition

Aluminum (Al), % 95 to 97.9
0
Carbon (C), % 0
0.37 to 0.44
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
98.4 to 98.9
Magnesium (Mg), % 0.7 to 1.2
0
Manganese (Mn), % 0.5 to 1.0
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.9 to 1.3
0
Sulfur (S), % 0
0.080 to 0.13
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.050 to 0.2
0
Residuals, % 0 to 0.15
0