MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. 4006 Aluminum

Both 6262 aluminum and 4006 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 4.6 to 10
3.4 to 24
Fatigue Strength, MPa 90 to 110
35 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170 to 240
70 to 91
Tensile Strength: Ultimate (UTS), MPa 290 to 390
110 to 160
Tensile Strength: Yield (Proof), MPa 270 to 360
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 580
620
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
220
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
56
Electrical Conductivity: Equal Weight (Specific), % IACS 140
180

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.0
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
28 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
50
Strength to Weight: Axial, points 29 to 39
11 to 16
Strength to Weight: Bending, points 35 to 42
19 to 24
Thermal Diffusivity, mm2/s 69
89
Thermal Shock Resistance, points 13 to 18
4.9 to 7.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.7 to 97.8
97.4 to 98.7
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0.040 to 0.14
0 to 0.2
Copper (Cu), % 0.15 to 0.4
0 to 0.1
Iron (Fe), % 0 to 0.7
0.5 to 0.8
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0 to 0.010
Manganese (Mn), % 0 to 0.15
0 to 0.050
Silicon (Si), % 0.4 to 0.8
0.8 to 1.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.050
Residuals, % 0 to 0.15
0 to 0.15