MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. Grade M30C Nickel

6262 aluminum belongs to the aluminum alloys classification, while grade M30C nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is grade M30C nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
160
Elongation at Break, % 4.6 to 10
29
Fatigue Strength, MPa 90 to 110
170
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
61
Tensile Strength: Ultimate (UTS), MPa 290 to 390
510
Tensile Strength: Yield (Proof), MPa 270 to 360
250

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 650
1290
Melting Onset (Solidus), °C 580
1240
Specific Heat Capacity, J/kg-K 890
430
Thermal Conductivity, W/m-K 170
22
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 2.8
8.8
Embodied Carbon, kg CO2/kg material 8.3
9.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
120
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
200
Stiffness to Weight: Axial, points 13
10
Stiffness to Weight: Bending, points 48
21
Strength to Weight: Axial, points 29 to 39
16
Strength to Weight: Bending, points 35 to 42
16
Thermal Diffusivity, mm2/s 69
5.7
Thermal Shock Resistance, points 13 to 18
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
26 to 33
Iron (Fe), % 0 to 0.7
0 to 3.5
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Nickel (Ni), % 0
56.6 to 72
Niobium (Nb), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.4 to 0.8
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0