MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. S38815 Stainless Steel

6262 aluminum belongs to the aluminum alloys classification, while S38815 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is S38815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.6 to 10
34
Fatigue Strength, MPa 90 to 110
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 170 to 240
410
Tensile Strength: Ultimate (UTS), MPa 290 to 390
610
Tensile Strength: Yield (Proof), MPa 270 to 360
290

Thermal Properties

Latent Heat of Fusion, J/g 400
370
Maximum Temperature: Mechanical, °C 160
860
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 580
1310
Specific Heat Capacity, J/kg-K 890
500
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 2.8
7.5
Embodied Carbon, kg CO2/kg material 8.3
3.8
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1190
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
170
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 29 to 39
22
Strength to Weight: Bending, points 35 to 42
21
Thermal Shock Resistance, points 13 to 18
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.7 to 97.8
0 to 0.3
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.040 to 0.14
13 to 15
Copper (Cu), % 0.15 to 0.4
0.75 to 1.5
Iron (Fe), % 0 to 0.7
56.1 to 67
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
13 to 17
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
5.5 to 6.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0