MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. EN AC-21100 Aluminum

Both 6262A aluminum and EN AC-21100 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 4.5 to 11
6.2 to 7.3
Fatigue Strength, MPa 94 to 110
79 to 87
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 310 to 410
340 to 350
Tensile Strength: Yield (Proof), MPa 270 to 370
210 to 240

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
670
Melting Onset (Solidus), °C 580
550
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 170
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
34
Electrical Conductivity: Equal Weight (Specific), % IACS 140
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 8.4
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
19 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
300 to 400
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
46
Strength to Weight: Axial, points 31 to 41
31 to 33
Strength to Weight: Bending, points 36 to 44
36 to 37
Thermal Diffusivity, mm2/s 67
48
Thermal Shock Resistance, points 14 to 18
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.2 to 97.8
93.4 to 95.7
Bismuth (Bi), % 0.4 to 0.9
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
4.2 to 5.2
Iron (Fe), % 0 to 0.7
0 to 0.19
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.55
Silicon (Si), % 0.4 to 0.8
0 to 0.18
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
0.15 to 0.3
Zinc (Zn), % 0 to 0.25
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.1

Comparable Variants