MakeItFrom.com
Menu (ESC)

6463 Aluminum vs. Grade Ti-Pd18 Titanium

6463 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 6463 aluminum and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 42 to 74
320
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 9.0 to 17
17
Fatigue Strength, MPa 45 to 76
350
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 140 to 230
710
Tensile Strength: Yield (Proof), MPa 82 to 200
540

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 160
330
Melting Completion (Liquidus), °C 660
1640
Melting Onset (Solidus), °C 620
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 190 to 210
8.2
Thermal Expansion, µm/m-K 23
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 55
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 170 to 180
2.7

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.3
41
Embodied Energy, MJ/kg 150
670
Embodied Water, L/kg 1190
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
110
Resilience: Unit (Modulus of Resilience), kJ/m3 50 to 300
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 14 to 24
44
Strength to Weight: Bending, points 22 to 31
39
Thermal Diffusivity, mm2/s 79 to 86
3.3
Thermal Shock Resistance, points 6.3 to 10
52

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.9 to 99.4
2.5 to 3.5
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.25
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0.2 to 0.6
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0 to 0.4