MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. 2618 Aluminum

Both 7003 aluminum and 2618 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is 2618 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 11
5.8
Fatigue Strength, MPa 130 to 150
110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 210 to 230
260
Tensile Strength: Ultimate (UTS), MPa 350 to 390
420
Tensile Strength: Yield (Proof), MPa 300 to 310
350

Thermal Properties

Latent Heat of Fusion, J/g 380
390
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 510
550
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 150
160
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
37
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.9
2.9
Embodied Carbon, kg CO2/kg material 8.1
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
23
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
850
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
47
Strength to Weight: Axial, points 33 to 37
40
Strength to Weight: Bending, points 37 to 40
42
Thermal Diffusivity, mm2/s 59
62
Thermal Shock Resistance, points 15 to 17
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.6 to 94.5
92.4 to 94.9
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.2
1.9 to 2.7
Iron (Fe), % 0 to 0.35
0.9 to 1.3
Magnesium (Mg), % 0.5 to 1.0
1.3 to 1.8
Manganese (Mn), % 0 to 0.3
0
Nickel (Ni), % 0
0.9 to 1.2
Silicon (Si), % 0 to 0.3
0.1 to 0.25
Titanium (Ti), % 0 to 0.2
0.040 to 0.1
Zinc (Zn), % 5.0 to 6.5
0 to 0.1
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.15