MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. 7050 Aluminum

Both 7003 aluminum and 7050 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 11
2.2 to 12
Fatigue Strength, MPa 130 to 150
130 to 210
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 26
26
Shear Strength, MPa 210 to 230
280 to 330
Tensile Strength: Ultimate (UTS), MPa 350 to 390
490 to 570
Tensile Strength: Yield (Proof), MPa 300 to 310
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 380
370
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 510
490
Specific Heat Capacity, J/kg-K 870
860
Thermal Conductivity, W/m-K 150
140
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
35
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.9
3.1
Embodied Carbon, kg CO2/kg material 8.1
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
1110 to 1760
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
45
Strength to Weight: Axial, points 33 to 37
45 to 51
Strength to Weight: Bending, points 37 to 40
45 to 50
Thermal Diffusivity, mm2/s 59
54
Thermal Shock Resistance, points 15 to 17
21 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.6 to 94.5
87.3 to 92.1
Chromium (Cr), % 0 to 0.2
0 to 0.040
Copper (Cu), % 0 to 0.2
2.0 to 2.6
Iron (Fe), % 0 to 0.35
0 to 0.15
Magnesium (Mg), % 0.5 to 1.0
1.9 to 2.6
Manganese (Mn), % 0 to 0.3
0 to 0.1
Silicon (Si), % 0 to 0.3
0 to 0.12
Titanium (Ti), % 0 to 0.2
0 to 0.060
Zinc (Zn), % 5.0 to 6.5
5.7 to 6.7
Zirconium (Zr), % 0.050 to 0.25
0.080 to 0.15
Residuals, % 0 to 0.15
0 to 0.15